
Models of Cognition and 
Learning

Andreas Wichert

DEIC
(Página da cadeira: Fenix)



n Unified Theories of Cognition and 
Learning

n SOAR
• ACT-R

n Associative Computation
n …



Unified Theories of Cognition
n Is a theory which attempts to unify all the 

theories of the mind in a single framework

n Allen Newell (1990) proposed that the current 
state-of-the-art in experimental psychology 
could now support such theories, based on 
years of accumulated results.



n To assert a unified theory of cognition, 
one must propose mechanisms by which 
the results of these human cognitive 
experiments can be reproduced



n Does the architecture make any attempt 
to model aspects of human behavior?

n Power Law of Learning:
n “the logarithm of the reaction time for a particular task 

decreases linearly with the logarithm of the number of practice 
trials taken 

n With more practice at a task, people seem to always be getting 
faster

n However, the rate of learning decreases the more practice one 
has 



Cognitive architectures
n In cognitive science, the term refers to the 

architecture of the mind: a fixed structure 
underlying the flexible domain of cognitive 
processing. 
n Cognitive architectures – for humans
n Architectures for intelligent agents – for 

agents
n The ambition of SOAR is to be both: a basis 

for both human and artificial cognition



n Soar is based upon a theory of human 
problem solving…

…in which...
n …all problem solving activity is formulated 

as the selection and application of 
operators to a state, to achieve some goal



Some Definitions

n a goal - is a desired situation.
n a state - is a representation of a problem 

solving situation.
n a problem space - is a set of states and 

operators for the task.
n an operator - transforms the state by 

some action



Problem spaces
n Represents all tasks as collections of 

problem spaces

n Problem space:
n States + operators that manipulate states



n The problem with a production system is 
the efficiency of matching a number of 
conditions against the knowledgebase. 

n The RETE algorithm 



Knowledge
n In order to act, Soar must have knowledge of that 

domain (either given to it or learned)
n Domain knowledge can be divided into two 

categories:
n (a) basic problem space knowledge: definitions 

of the state representation, the “legal move”
operators, their applicability conditions, and 
their effects

n (b) control knowledge, which gives guidance on 
choosing what to do, such as heuristics for 
solving problems in the domain
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Knowledge
n Given just the basic knowledge, Soar can 

proceed to search it
n But the search will be “unintelligent” (e.g. 

random or unguided depth first) — by definition 
it does not have the extra knowledge needed to 
do intelligent search

n Important basic knowledge centers round the 
operators:
n when an operator is applicable
n how to apply it
n how to tell when it is done.



Memories 

n Soar has three memories:
n Working memory -

• holds knowledge about the current 
situation

n Production memory -
• holds long-term knowledge in the form of 

rules
n Preference memory



Memories

n Preference memory -
n stores suggestions about changes to 

working memory. 
• Allows Soar to reason about what it does. 
• If it cannot, then Soar invokes a subgoal 

and learns about the result.



Long term memory
n Soar's long term memory is a production 

system 
n Productions:

n have a set of conditions, which are patterns 
to be matched to working memory

n a set of actions to perform when the 
production fires
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Production Rules: Form of 
Knowledge

n Knowledge is encoded in production rules. A rule 
has conditions on its LHS, and actions on the RHS:  
C --> A.

n Two memories are relevant here: 
n the production memory (PM), permanent knowledge in 

the form of production rules

n working memory (WM), temporary information about the 
situation being dealt with, as a collection of elements
(WMEs).



What Do Rules Look Like?
## Propose drink.
sp {ht*propose-op*drink

(state <s> ^problem-space <p>
^thirsty yes)

(<p> ^name hungry-thirsty)
-->
(<s> ^operator <o> +)
(<o> ^name drink +)}

sp {ht*propose-op*drink

(state <s> ^problem-space.name 
hungry-thirsty                                              
^thirsty yes)

-->

(<s> ^operator <o>)

(<o> ^name drink)}

sp {ht*propose-op*eat
(state <s> ^problem-space.name 

hungry-thirsty                                              
^hungry yes)

-->
(<s> ^operator.name eat)}

IF we are in the hungry-thirsty problem 
space, AND

in the current state we are thirsty

THEN propose an operator to apply to the 
current state,

and call this operator “drink”



Concrete Representation

n Soar uses attribute-values to represent information.  For 
example,
n (x35 ^isa block ^colour red ^size large)

n Attributes commonly have a single value. (Theoretical & 
practical reasons for avoiding multiple values.)

n Operators are state attributes, at most one value:
n (s13 ^operator o51)



Simple diagram of 
representation

n For informal discussion, it can be helpful to 
use a simple diagrammatic depiction of Soar 
objects in WM.

n The coloured blocks of the previous slide 
might be shown as:

S1

S2

S3

x35

x47

superstate

abovebelow

isa

isa

colour

size

block

cylinder

red

green

large

object



Soar on a Slide

new “results”
give rise to

new productions

actions write
into SDM

conditions
test SDM

Production Memory (LTM)

A    &    B   =>  X

C    &    D   =>  Y

…    …        =>  …

impasse

operator: paint

S1

S2
operator

no-change

block

green

Soarʼs Working Memory (WM)



Working memory
n Soar's working memory consists of a set of (Object 

^attribute value) elements
n Value may be a symbolic constant, a number, a string, 

or an Object
n The context stack consists of the context objects 

currently in working memory: all goals, problem spaces, 
states, and operators

n All context elements are attached to a goal, and all 
goals except the top goal point to a supergoal, imposing 
a linear order on the context stack.



n There must be some chain of elements from a context 
object to every element in working memory. If this chain 
is broken the element is removed from working memory

n The Decision Cycle can examine and modify the entire 
context stack

n The preference memory determines which elements 
enter and leave working memory 



n Soar performs no conflict resolution 
between competing productions- all 
productions which match the current 
working memory fire 



Decision cycle
n Soar works in a loop called decision 

cycle:

n Elaboration
n Decision
n Repeat



n Elaboration:
n all productions which match the current 

working memory fire
n All productions fire in parallel

• (until no more productions fire)



n Decision
n examines any preferences put into 

preference memory
n chooses the next problem space, state, 

operator or goal 



Impasse
n If there is not enough information (or the 

information is contradictory) for the 
decision phase to choose the next slot 
value, then an impasse results



n There are four types of impasses:
1. When two are more elements have equal 

preference, then there is a "tie impasse”
2. When no preferences are in working 

memory, this causes a "no-change impasse“
3. When the only preferences in working 

memory are rejected by other preferences, 
then there is a "reject impasse”

4. A "conflict impasse" results when 
preferences claim that two or more elements 
are each better choices then the others



n Impasses occur when there is a lack of 
applicable knowledge in the current 
problem space, 

n Problem solving needs to take place
n This problem solving proceeds in the form of 

an automatically generated subgoal. 



The Context Stack
n There can be several problem spaces (i.e. contexts) active 

at once

n Each may lack knowledge needed to continue.  Then, Soar sees an 
impasse and automatically sets up a new context (or substate), whose 
purpose is to find the missing information and supply it to the context 
above.

n Each decision cycle ends with some kind of change to the 
context stack.  If the knowledge available (i.e. in the 
productions) specifies a unique next operator, then that 
change is made.  Otherwise, an impasse arises because 
the immediately applicable knowledge is insufficient to 
specify the change.



Impasses and Substates
n When Soar encounters an impasse at level-1, it 

sets up a substate at level-2, which has associated 
with it its own current state and operators

n The goal of the 2nd level is to find knowledge 
sufficient to resolve the higher impasse, allowing 
processing to resume there



How It Works (1)
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How It Works (2)

Selection Problem Space

CC

C

C

A

A

A

A

B

B

B

B

C A

B

Initial state



Perceptual-Motor System
n The perceptual and  motor subsystem consist of 

independant modules for each output channel. They run 
asynchronously with respect to each other and to the 
remainder of the architecture. The motor modules accept 
commands from working memory and execute them. 
Their progress can then be monitored through sensors 
that are fed back into the system via the perception 
subsystem

n The perceptual modules deliver data directly into working 
memory whenever it is available

n All perceptual and motor behavior is mediated through 
working memory



n Encoding and decoding production are used to convert 
between high-level structures use by the cognitive 
system, and the low-level structures used by the 
perceptual and motor subsystems

n These productions are the same as regular Soar 
production except that they match on perceptual and 
motor working memory elements and are independant 
of context (problem space, state, operator).

n This autonomy from context is critical because it allows 
the decision procedure to proceed without waiting for 
quiescense, which may not occur in a rapidly changing 
environment



Chunking-based Learning
n Psychological phenomena of chunking:

n The association of chunks (expressions or symbols) 
into a new, single chunk 

n In Soar, chunking collapses the results of an 
impasse into a production which can then be fired if 
the same, or similar situation occurs again, thus 
avoiding the impasse

n This leads directly to Soar's ability to move from 
problematic to routine behavior 

n Since the learning mechanism creates new 
knowledge in the same form as the rest of the 
system's knowledge (i.e. productions), the uniformity 
of the representation is maintained by the learning 
mechanism



Learning

n Resolving an impasse leads to learning.
n The sole learning mechanism is called 

chunking.
n A chunk is a new production that summarises 

the processing that was needed to resolve the 
impasse.

n The chunk will be used in the future to avoid a 
similar impasse situation.



n The architecture directs the creation of a chunk 
whenever an impasse is resolved

n Chunking can be viewed as a caching 
mechanism 
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Op No 
Change

Count problem space

Soar, Learning in Action

Add 1+2

Result=3
New rule:
If op is add 1+2
then result = 3
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Impasses and Substates
n The processing at level-2 might itself encounter an impasse, 

set up a substate at level-3, and so on.  So in general we 
have a stack of such levels, each generated by an impasse 
in the level above.  Each level is referred to as a context (or 
state), and each context has its own current S and Os.

n Example:

Notice that the architecture’s problem solving approach is 

applied recursively at each level.

S1

S2

S3

Context1

Context2

Context3

?    no operator proposed

which operator?

O'

O''

O'''
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Chunking 2: The backtrace

A

B

E

D

C

R

IMPASSE

Chunk: A & B & D  ⇒  R

Circles are WMEs or sets of WMEs
Bold circles indicate nodes essential to the resolution
Arrow sets going into a node are rules that fire to add it
Numbered nodes are WMEs in the impasse

1
2

3

4



Implications
n Problem solving and chunking mechanisms are thus tightly 

intertwined: chunking depends on the problem solving, and 
most problem solving would not work without chunking.

n Even when no chunk is actually built (because learning off, 
or bottom up, or duplicate, or whatever), an internal chunk 
called a justification is formed



ACT-R 5.0
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Retrieval Buffer 
(VLPFC)

Matching (Striatum)

Selection (Pallidum)

Execution (Thalamus)

Goal Buffer 
(DLPFC)

Visual Buffer 
(Parietal)

Manual Buffer 
(Motor)

Manual Module 
(Motor/Cerebellum)

Visual Module       
(Occipital/etc)

Intentional Module      
(not identified)

Declarative Module      
(Temporal/Hippocampus)



ADDITION-FACT

ADDEND1 THREE

ADDEND2 FOUR

SUM   

FACT3+4(

SEVEN )

isa

Chunks: Example

CHUNK-TYPE NAME SLOT1 SLOT2 SLOTN( )



Knowledge
n Domain knowledge can be divided into two 

categories:

n (a) basic problem space knowledge: definitions 
of the state representation, the “legal move”
operators, their applicability conditions, and 
their effects

n (b) control knowledge, which gives guidance on 
choosing what to do, such as heuristics for 
solving problems in the domain



Representation

n To ease comprehension for a  human reader, additional 
pictograms like  two dimensional binary sketches are 
often used beside the symbolical representation







































n Learning Chunks (with experience)
n Learning with a teacher with associative 

memory
n Learning by experience with associative 

memory


