
Models of Cognition and
Learning

Andreas Wichert

DEIC
(Página da cadeira: Fenix)

n Unified Theories of Cognition and
Learning

n SOAR
• ACT-R

n Associative Computation
n …

Unified Theories of Cognition
n Is a theory which attempts to unify all the

theories of the mind in a single framework

n Allen Newell (1990) proposed that the current
state-of-the-art in experimental psychology
could now support such theories, based on
years of accumulated results.

n To assert a unified theory of cognition,
one must propose mechanisms by which
the results of these human cognitive
experiments can be reproduced

n Does the architecture make any attempt
to model aspects of human behavior?

n Power Law of Learning:
n “the logarithm of the reaction time for a particular task

decreases linearly with the logarithm of the number of practice
trials taken

n With more practice at a task, people seem to always be getting
faster

n However, the rate of learning decreases the more practice one
has

Cognitive architectures
n In cognitive science, the term refers to the

architecture of the mind: a fixed structure
underlying the flexible domain of cognitive
processing.
n Cognitive architectures – for humans
n Architectures for intelligent agents – for

agents
n The ambition of SOAR is to be both: a basis

for both human and artificial cognition

n Soar is based upon a theory of human
problem solving…

…in which...
n …all problem solving activity is formulated

as the selection and application of
operators to a state, to achieve some goal

Some Definitions

n a goal - is a desired situation.
n a state - is a representation of a problem

solving situation.
n a problem space - is a set of states and

operators for the task.
n an operator - transforms the state by

some action

Problem spaces
n Represents all tasks as collections of

problem spaces

n Problem space:
n States + operators that manipulate states

n The problem with a production system is
the efficiency of matching a number of
conditions against the knowledgebase.

n The RETE algorithm

Knowledge
n In order to act, Soar must have knowledge of that

domain (either given to it or learned)
n Domain knowledge can be divided into two

categories:
n (a) basic problem space knowledge: definitions

of the state representation, the “legal move”
operators, their applicability conditions, and
their effects

n (b) control knowledge, which gives guidance on
choosing what to do, such as heuristics for
solving problems in the domain

12

Knowledge
n Given just the basic knowledge, Soar can

proceed to search it
n But the search will be “unintelligent” (e.g.

random or unguided depth first) — by definition
it does not have the extra knowledge needed to
do intelligent search

n Important basic knowledge centers round the
operators:
n when an operator is applicable
n how to apply it
n how to tell when it is done.

Memories

n Soar has three memories:
n Working memory -

• holds knowledge about the current
situation

n Production memory -
• holds long-term knowledge in the form of

rules
n Preference memory

Memories

n Preference memory -
n stores suggestions about changes to

working memory.
• Allows Soar to reason about what it does.
• If it cannot, then Soar invokes a subgoal

and learns about the result.

Long term memory
n Soar's long term memory is a production

system
n Productions:

n have a set of conditions, which are patterns
to be matched to working memory

n a set of actions to perform when the
production fires

16

Production Rules: Form of
Knowledge

n Knowledge is encoded in production rules. A rule
has conditions on its LHS, and actions on the RHS:
C --> A.

n Two memories are relevant here:
n the production memory (PM), permanent knowledge in

the form of production rules

n working memory (WM), temporary information about the
situation being dealt with, as a collection of elements
(WMEs).

What Do Rules Look Like?
Propose drink.
sp {ht*propose-op*drink

(state <s> ^problem-space <p>
^thirsty yes)

(<p> ^name hungry-thirsty)
-->
(<s> ^operator <o> +)
(<o> ^name drink +)}

sp {ht*propose-op*drink

(state <s> ^problem-space.name
hungry-thirsty
^thirsty yes)

-->

(<s> ^operator <o>)

(<o> ^name drink)}

sp {ht*propose-op*eat
(state <s> ^problem-space.name

hungry-thirsty
^hungry yes)

-->
(<s> ^operator.name eat)}

IF we are in the hungry-thirsty problem
space, AND

in the current state we are thirsty

THEN propose an operator to apply to the
current state,

and call this operator “drink”

Concrete Representation

n Soar uses attribute-values to represent information. For
example,
n (x35 ^isa block ^colour red ^size large)

n Attributes commonly have a single value. (Theoretical &
practical reasons for avoiding multiple values.)

n Operators are state attributes, at most one value:
n (s13 ^operator o51)

Simple diagram of
representation

n For informal discussion, it can be helpful to
use a simple diagrammatic depiction of Soar
objects in WM.

n The coloured blocks of the previous slide
might be shown as:

S1

S2

S3

x35

x47

superstate

abovebelow

isa

isa

colour

size

block

cylinder

red

green

large

object

Soar on a Slide

new “results”
give rise to

new productions

actions write
into SDM

conditions
test SDM

Production Memory (LTM)

A & B => X

C & D => Y

… … => …

impasse

operator: paint

S1

S2
operator

no-change

block

green

Soarʼs Working Memory (WM)

Working memory
n Soar's working memory consists of a set of (Object

^attribute value) elements
n Value may be a symbolic constant, a number, a string,

or an Object
n The context stack consists of the context objects

currently in working memory: all goals, problem spaces,
states, and operators

n All context elements are attached to a goal, and all
goals except the top goal point to a supergoal, imposing
a linear order on the context stack.

n There must be some chain of elements from a context
object to every element in working memory. If this chain
is broken the element is removed from working memory

n The Decision Cycle can examine and modify the entire
context stack

n The preference memory determines which elements
enter and leave working memory

n Soar performs no conflict resolution
between competing productions- all
productions which match the current
working memory fire

Decision cycle
n Soar works in a loop called decision

cycle:

n Elaboration
n Decision
n Repeat

n Elaboration:
n all productions which match the current

working memory fire
n All productions fire in parallel

• (until no more productions fire)

n Decision
n examines any preferences put into

preference memory
n chooses the next problem space, state,

operator or goal

Impasse
n If there is not enough information (or the

information is contradictory) for the
decision phase to choose the next slot
value, then an impasse results

n There are four types of impasses:
1. When two are more elements have equal

preference, then there is a "tie impasse”
2. When no preferences are in working

memory, this causes a "no-change impasse“
3. When the only preferences in working

memory are rejected by other preferences,
then there is a "reject impasse”

4. A "conflict impasse" results when
preferences claim that two or more elements
are each better choices then the others

n Impasses occur when there is a lack of
applicable knowledge in the current
problem space,

n Problem solving needs to take place
n This problem solving proceeds in the form of

an automatically generated subgoal.

The Context Stack
n There can be several problem spaces (i.e. contexts) active

at once

n Each may lack knowledge needed to continue. Then, Soar sees an
impasse and automatically sets up a new context (or substate), whose
purpose is to find the missing information and supply it to the context
above.

n Each decision cycle ends with some kind of change to the
context stack. If the knowledge available (i.e. in the
productions) specifies a unique next operator, then that
change is made. Otherwise, an impasse arises because
the immediately applicable knowledge is insufficient to
specify the change.

Impasses and Substates
n When Soar encounters an impasse at level-1, it

sets up a substate at level-2, which has associated
with it its own current state and operators

n The goal of the 2nd level is to find knowledge
sufficient to resolve the higher impasse, allowing
processing to resume there

How It Works (1)

Desired state

C

B

A

C B A

C

C

A

B

B

A

C

B A

C

B

A

C

B

A

Initial state

C B A

How It Works (2)

Selection Problem Space

CC

C

C

A

A

A

A

B

B

B

B

C A

B

Initial state

Perceptual-Motor System
n The perceptual and motor subsystem consist of

independant modules for each output channel. They run
asynchronously with respect to each other and to the
remainder of the architecture. The motor modules accept
commands from working memory and execute them.
Their progress can then be monitored through sensors
that are fed back into the system via the perception
subsystem

n The perceptual modules deliver data directly into working
memory whenever it is available

n All perceptual and motor behavior is mediated through
working memory

n Encoding and decoding production are used to convert
between high-level structures use by the cognitive
system, and the low-level structures used by the
perceptual and motor subsystems

n These productions are the same as regular Soar
production except that they match on perceptual and
motor working memory elements and are independant
of context (problem space, state, operator).

n This autonomy from context is critical because it allows
the decision procedure to proceed without waiting for
quiescense, which may not occur in a rapidly changing
environment

Chunking-based Learning
n Psychological phenomena of chunking:

n The association of chunks (expressions or symbols)
into a new, single chunk

n In Soar, chunking collapses the results of an
impasse into a production which can then be fired if
the same, or similar situation occurs again, thus
avoiding the impasse

n This leads directly to Soar's ability to move from
problematic to routine behavior

n Since the learning mechanism creates new
knowledge in the same form as the rest of the
system's knowledge (i.e. productions), the uniformity
of the representation is maintained by the learning
mechanism

Learning

n Resolving an impasse leads to learning.
n The sole learning mechanism is called

chunking.
n A chunk is a new production that summarises

the processing that was needed to resolve the
impasse.

n The chunk will be used in the future to avoid a
similar impasse situation.

n The architecture directs the creation of a chunk
whenever an impasse is resolved

n Chunking can be viewed as a caching
mechanism

39

Op No
Change

Count problem space

Soar, Learning in Action

Add 1+2

Result=3
New rule:
If op is add 1+2
then result = 3

40

Impasses and Substates
n The processing at level-2 might itself encounter an impasse,

set up a substate at level-3, and so on. So in general we
have a stack of such levels, each generated by an impasse
in the level above. Each level is referred to as a context (or
state), and each context has its own current S and Os.

n Example:

Notice that the architecture’s problem solving approach is

applied recursively at each level.

S1

S2

S3

Context1

Context2

Context3

? no operator proposed

which operator?

O'

O''

O'''

41

Chunking 2: The backtrace

A

B

E

D

C

R

IMPASSE

Chunk: A & B & D ⇒ R

Circles are WMEs or sets of WMEs
Bold circles indicate nodes essential to the resolution
Arrow sets going into a node are rules that fire to add it
Numbered nodes are WMEs in the impasse

1
2

3

4

Implications
n Problem solving and chunking mechanisms are thus tightly

intertwined: chunking depends on the problem solving, and
most problem solving would not work without chunking.

n Even when no chunk is actually built (because learning off,
or bottom up, or duplicate, or whatever), an internal chunk
called a justification is formed

ACT-R 5.0

Environment

Pr
od

uc
tio

ns
(B

as
al

 G
an

gl
ia

)

Retrieval Buffer
(VLPFC)

Matching (Striatum)

Selection (Pallidum)

Execution (Thalamus)

Goal Buffer
(DLPFC)

Visual Buffer
(Parietal)

Manual Buffer
(Motor)

Manual Module
(Motor/Cerebellum)

Visual Module
(Occipital/etc)

Intentional Module
(not identified)

Declarative Module
(Temporal/Hippocampus)

ADDITION-FACT

ADDEND1 THREE

ADDEND2 FOUR

SUM

FACT3+4(

SEVEN)

isa

Chunks: Example

CHUNK-TYPE NAME SLOT1 SLOT2 SLOTN()

Knowledge
n Domain knowledge can be divided into two

categories:

n (a) basic problem space knowledge: definitions
of the state representation, the “legal move”
operators, their applicability conditions, and
their effects

n (b) control knowledge, which gives guidance on
choosing what to do, such as heuristics for
solving problems in the domain

Representation

n To ease comprehension for a human reader, additional
pictograms like two dimensional binary sketches are
often used beside the symbolical representation

n Learning Chunks (with experience)
n Learning with a teacher with associative

memory
n Learning by experience with associative

memory

